Department of Physics

Presented by: Dr. R. N. Mulik

Principal Investigator	Institute	Content Writer
Prof. Dr. R. N. Mulik	D.B.F. Dayanand College of Arts	• Prof. Dr. R. N. Mulik
Professor, Head	and Science, Solapur. Website:	Email: <u>drrnmulik@gmail.com</u>
Dept of Physics	www.dayanandsolapur.org	Mob. No.: +91 9850227298
DBF Dayanand College of	Email: <u>spr_dayartsc@bsnl.in</u>	• Mr. S. S. Bandgar
Arts and Science, Solapur		Email:sushil.bandgar2503@gmail.com
Email: <u>drrnmulik@gmail.com</u>		Cell: +91 9561 61131
Mob. No.: +91 9850227298		
Technical Co-ordinator	Reviewer-1	Reviewer-2
Prof. Dr. S. D. Chavan	Dr. S. G. Pawar	Dr. C.V. Chanmal

SUBJECT	PHYSICS
PAPER NO & TITLE	Paper - V
	General Physics, Heat and Sound
MODULE TAG	DAYA_PHY_RNM_M1

General Physics, Heat and Sound Class: B.Sc. II (Semester: III) Date: 23rd July 2020

PHYSICS

Department of Physics Presented by: Dr. R. N. Mulik

atthent

CONTENT

- 1. Learning Outcomes
- **1.1 Introduction**
- **1.2 Precession**
- **1.3 Gyroscope**
- 1.4 Summery

PHYSICS

General Physics, Heat and Sound Class: B.Sc. II (Semester: III) Date: 23rd July 2020

Department of Physics

Presented by: Dr. R. N. Mulik

1. Learning Outcomes

- In this module,
- You shall learn about the information of precessional motion and torque.
- You shall learn about Gyroscope
- You shall learn about relation between gravitational torque and gyroscopic motion
- You shall learn about Application of Gyroscope and Processional Motion

PHYSICS

General Physics, Heat and Sound Class: B.Sc. II (Semester: III) Date: 23rd July 2020

Department of Physics

Presented by: Dr. R. N. Mulik

1.1 Introduction

- Working of gyrocompass for navigation of ships and aeroplanes, directional stability of firing bullet etc., the principle of precessional motion is employed.
- To study the precessional motion, plane vectors is essential.
- The physical quantities like velocity, acceleration, force etc. can be represented by vectors called as linear vectors.
- Rotational dynamics, are represented by plane vectors.
- A plane vector is a two dimensional with one dimension as a plane of rotation and the other is its line of action. Eg. Angular velocity, angular momentum, torque etc.

PHYSICS

General Physics, Heat and Sound Class: B.Sc. II (Semester: III) Date: 23rd July 2020

Department of Physics

Presented by: Dr. R. N. Mulik

1.2 Precession

- The plane of rotation is called precession.
- The precession is caused by a couple or torque acting on a plane perpendicular to the rotation (or spin) of the body.

For precession a torque is necessary:

- Consider a disc DD revolving with a constant angular velocity ω .
- Let the plane of the disc is perpendicular to the plane of paper and axis along YY'
- I be the moment of inertia
- Iω angular momentum
- After precession the disc takes position D'D' making an angle Ødt with its original position.

PHYSICS

General Physics, Heat and Sound Class: B.Sc. II (Semester: III) Date: 23rd July 2020

Department of Physics

Presented by: Dr. R. N. Mulik

Then,

The change in angular momentum of the disc is represented vectorially by,

This change is done in time dt.

 $\therefore \text{ Rate of change of angular momentum of the disc} = \frac{I\omega \phi dt}{dt} = I\omega \phi$

Since, the rate of change of angular momentum of a rotating body is equal to the torque

... Precessional torque, τ₁ = Ιω φ

JIK

Rate of precission, $\phi = \frac{\tau_1}{I\omega}$

Thus, the rate of precession is directly proportional to the applied torque r_1 and inversely proportional to the angular momentum $I\omega$ of the body.

PHYSICS

General Physics, Heat and Sound Class: B.Sc. II (Semester: III) Date: 23rd July 2020

Department of Physics Presented by: Dr. R. N. Mulik

1.3 Gyroscope

- In gyroscope the processional torque needed for processional motion is provided by the gravitational torque r_2
- Consider a heavy disc D, rotating with high angular velocity omega about an axis PQ, resting on a vertical pivot at point P as shown in Fig.
- Let M be the mass of the disc and Mg is weight of the disc which acts vertically downward.
- This weight exerts a gravitational torque r_2 on it

General Physics, Heat and Sound Class: B.Sc. II (Semester: III) Date: 23rd July 2020

PHYSICS

Department of Physics

Presented by: Dr. R. N. Mulik

$$\tau_2 = Mg \times PO = mg \cdot l$$

when the body is rotating about some axis (PQ), this gravitational torque supplies the necessary precessional torque equal in its magnitude.

 $\tau_2 = \tau_1$ $Mgl = I_{0}\phi$ $\therefore \phi = \frac{Mgl}{l_{0}}$

But $I = Mk^2$, where k is the radius of gyration of the disc about PQ.

 $\therefore \quad \phi \qquad = \frac{Mgl}{Mk^2\omega}$ $\phi = \frac{gl}{k^2\omega}$

If t is the time-period of precessional motion, then t = $\frac{2\pi}{\Phi}$.

It is the time required for one complete cycle of processional motion.

This type of precessional motion maintained by the gravitational torque is called gyroscopic motion.

PHYSICS	General Physics, Heat and SoundClass: B.Sc. II (Semester: III) Date: 23rd July 2020Module.1: Precession and Gyroscope

Department of Physics Presented by: Dr. R. N. Mulik

1.4 Summery

- The rate of precession is directly proportional to applied torque
- The rate of precession is inversely proportional to angular momentum
- Precessional motion maintained by the gravitational torque is called gyroscopic motion.
- Gyrocompass for navigation of ships and aeroplanes, directional stability of firing bullet etc., the principle of precessional motion is employed.

Homework

Multiple Choice Questions :

- 1. The change in plane of rotation of a rotating disc is called------
 - (a) nutation
- (b) vibration
- (c) rotation
- (d) precession
- 2. In pure precessional motion, nutation is------
 - (a) absent

(b) very small

(c) large

(d) none of these

General Physics, Heat and Sound Class: B.Sc. II (Semester: III) Date: 23rd July 2020

PHYSICS

Department of Physics

Presented by: Dr. R. N. Mulik

apr

- 3. Gyrocompass is used to determine -----
 - angle of dip (a)
 - geographic north-south direction (b)
 - distance between two places (c)
 - (d) magnetic north-south
- 4. In general the motion of gyroscope consists of-----stment
 - (a) rotation and precession
 - only rotation (b)
 - rotation, precession and nutation (c)
 - only precession (d)

Feedback:

References

- 1. R. N. Mulik, S. G. Holikatti, B. T. Raut, S. D. Chavan, C. V. Chanmal, S. G. Pawar, General Pysics Heat and Sound, Nirali Prakashan, ISBN 978-93-5164-686-0. (Jully-2019)
- 2. M. S. Longair, Theoretical Concepts in Physics by call Number: QC20 L64 2003 New York : Cambridge University Press, (2003)
- 3. Feynman Lectures Series Vol I, II, III.

General Physics, Heat and Sound Class: B.Sc. II (Semester: III) Date: 23rd July 2020

PHYSICS