

SUBJECT	ZOOLOGY
PaperNo. And Title	II AnimalDiversity-II
Module No. and Title	V-Mammals
Module tag	DBF-ZOO-MAM

MAMMALS

Dr.Laxmi Chandrakant Mushan Associate Professor DBF Dayanand College of Arts and Science Solapur

Learning outcome:

Develop understanding on the diversity of life with regard to chordates.

- Group animals on the basis of their morphological characteristics/ structures.
- Develop critical understanding how morphological change due to change in environment helps drive evolution over a long period of time.

Table of contents

	MAMMALS
1	Introduction
2	General characters of mammals
3	Classification of mammalss
4	Adaptive radiation in mammals

Introduction

Mammals form the highest group in animal kingdom and they show great diversity. Hair clad ,air breathing warmblooded, viviparous tetarapod vdertebrates are mammals

General features of Mammals:

- Body having different shape and divisible into head, neck, trunk and tail.
- Skin covered with horny epidermal exoskeleton of hair. Skin is thick , glandular having sebaceous and sudorific (sweat) gland.
- Mammary glands are present which secret milk for nourishment of the young.

Two pairs of pentadactyle limbs variously adapted for walking, running, burrowing, swimming or flying. Each foot bears 5 (or fewer) toes provided with horny claws, nails or hoofs

- Skull has large cranial cavity. The lower jaw is reduced to a single dentary bone. Teeth are heterodont, thecodont and diphyodont.
- Vertebrae are gastrocentrous. Neck contains 7 vertebrae.

- Buccal cavity contains true salivary glands, tongue mobile, alimentary canal leads into anus and cloaca is absent.
- Lungs are respiratory organs. Larynx contains well developed vocal cords for sound production. Glottis is guarded by epiglottis.
- Heart is 4 chambered having two auricles and two ventricles. Only left systemic arch is present.
- A muscular diaphragm completely separates thoracic cavity from an abdominal cavity.
- Kidneys are metanephric, ureters open into the urinary bladder.
- Brain is highly developed. Corpus callosum connects the two haves of cerebrum. 12 pairs of cranial nerves are present.
- Eyes have movable lids. Ear has a large external pinna, middle ear has ear ossicles, an internal ear has membranous labyrinth with spirally coiled cochlea.
- Sexes are separate and paired gonads. Fertilization is internal and mammals are viviparous.
- Embryo develops within the uterus except monotremes. Embryo has amnion, chorion and allantois. Placenta fixes the embryo to uterine wall for nourishment, respiration and excretion.
- Mammals are homiothermic animals.

CLASSIFICATION OF MAMMALS UPTO ORDERS

• The class Mammalia is divided into two subclasses, Prototheria and Theria.

Subclass 1. Prototheria:

- These are primitive, egg-laying mammals which are connecting link between reptiles and mammals.
- After hatching young ones are nourished on milk from mammary glands.
- Pectoral girdle has separate precoracoid, coracoid and interclavicle.
- Testes are abdominal. Cloaca is present . Teeth occur only in young, the adult having bony beak.
- Brain is small, corpus callosum is absent. Skeleton is reptilian.

• The subclass Prototheria includes only one order called Monotremata.

Order- Monotremata:

- This order has all the characters of the subclass Pototheria.
- Ex: Spiny ant eater, Ornithorhynchus (Duck billed platypus).

Subclass 2. Theria

- They do not lay eggs but they give birth to young ones.
- Mammary glands are provided with teats.
- Ear has external pinna. Brain is mostly with corpus callosum.
- Vertebrae bear epiphyses, coracoid is reduced.
- Cloaca is absent, digestive and urino-genital system opens out by separate apertures.
- Teeth occur in both the young and the adults.
- The subclass Theria is divided into infra classes.
 - Infraclass 1. Metatheria
- They are called pouched mammals.
- Epipubic bone is present.

- Female has ventral pouch called marsupium.
- The young ones are born in an extremely immature condition and undergo further development in a marsupium.
- Uteri and vaginae of the two sides remain separate.
- They are monophyodont with only one set of teeth.

Order- Marsupialia

- Characters same as infraclass- Metatheria.
- Ex. Didelphis (Opossum), Macropus (Kangaroo).

Infra-class-2. Eutheria:

- They are called placental mammals.
- They have allontoic placenta. Yolk sac is present but without yolk.
- Uteri generally and vagina always united into one.
- Young ones have prolonged intrauterine development.
 - Brain is highly developed. There is no cloaca.
 - The infraclass Eutheria is divided into 16 orders.

Order 1: Insectivora

- They are small, primitive mammals.
- Food mainly insects clawed digits. The locomotion is plantigrade.

• Many teats and multiple births. Testes internal.

• They have elongated snout, skin covered by soft fur or with spines. Ex: Sorex, Eranaceus

Order 2. Chiroptera:

- They are flying mammals. Forelimbs are modified with lateral fold of skin called patagia or wings.
- Hind limbs are short and weak. All five digits of hind limbs and first two digits of forelimbs bear claw used for hanging.
- Bones are slender. Sense of touch and hearing remarkably developed.
- They are nocturnal gregarious. Two mammae present on thorax.
- Ex: Pteropus (Flying fox).

Order 3. Dermoptera:

- A thin, wide, hairy fold of skin the patagium extends along either side of the body.
- All the four limbs are of equal size.

• They are flying mammals, nocturnal and arboreal, but they only glide. Ex: Galeopithecus (Flying lemur)

Order 4. Edentata:

- Dentition incomplete, only molars present.
- Limbs have sharp claws on the digits.
- Tongue is long and protrusible.
- Ex: Dasypus.

Order 5. Pholidota:

- Body elongated, pointed head and long prehensile tail.
- Limbs are armed with strong curved claws. Tongue is very long, sticky and protrusible.
- Jaw lack teeth, eyes small. Insectivorous.

• Ex: Manis (Scaly ant-eater).

Order 6. Rodentia:

- Small mammals , herbivorous in diet.
- Dentition is modified for gnawing and chewing. Single pair of incisors, long sharp.
- Digits have claws.
- Skin covered with fur. Spines in porcupine.
- They are pentigrade or semipentigrade.
- They are prolific breeders and produce several young ones at a time.
- They have many mammae. Ex: Hystrix (Porcupine) Rattus.

Order 7. Lagomorpha:

- They have two pairs of incisors in upper jaw.
- Pinnae are long. Hindlimbs are long and tail is short.
- They are herbivorous, burrowing animals.
- Ex: Rabbit, Lepus.

Order 8. Primates:'

- They are most intelligent animals. Highly developed brain.
- Pentigrade and long limbs each having five digits with nails. The are arboreal animals.
- Eyes directed forwards to give binocular vision. Single pair of teats in female.
- Birth is given to single young one.
- They show parental care. Ex: Loris, Chimpanzee.

Order 9. Cetacea:

- They are adapted for aquatic life.
- Body is fish like, covered with smooth skin .
- Forelimbs modified into paddle-like flippers. Hindlimbs absent.

- Tail is dorsoventrally flattened, ends into flaps and flukes. Tail useful for swimming
- Eyes are small without nictitating membrane.
- Teeth homodont, lack enamel. Females have only two mammae, they are carnivorous.
- Ex: Balaenoptera (blue whale), Dolphin.

Order 10. Carnivora:

- They are very agile, bold and ferocious mammals.
- They feed on flesh. Few are omnivorous or herbivorous.
- Teeth sharp canines, premolars have cutting edges and two molars are crushing teeth.
- Jaws are powerful, useful for capture, kill and tear the prey.
- Senses are very keen, cerebrum is well convoluted.
- They are mostly terrestrial but some are aquatic. Ex: Panthera, Bear.

Order 11. Tubulidentata:

- They have stout, somewhat pig-like sparsely hair on body with long snout and pinnae.
- Mouth tubular, slender protrusible sticky tongue. Toes have heavy claws.
- Ex: Orycterpus.

Order 12. Hyrocoida:

- Small mammals like guinea pigs.
- Pinnae and tail are short. Four digits on forelimbs and three on hindlimbs.
- Ex: Procavi (Haryx).

Order 13. Proboscidea:

- They are largest terrestrial mammals.
- Head large, neck short, eyes small, broad fan-like ears, huge trunk, thick pillar like legs and small tail.
- The snout and upper lip are prolonged into long, muscular, prehensile proboscis or trunk.
- Skin thick, with scanty hair.

- Upper jaw bear only two incisors.
- Skull is very large. Limbs pentadactye with nail like hoof. Ex: Elephas, Laxodonta.

Order 14. Sirenia:

- They are large, aquatic, hairless mammals. Body spindle shaped, forelimbs modified into paddles, hindlimbs absent.
- Tail bears fin or fluke. Head has blunt mizzle, small mouth, fleshy lips eyes small.
- Ex: Dugong.

Order 15: Perissodactyla:

- Terrestrial and herbivorous mammals.
- Limbs are long adapted for swift running.
- They have odd number of digits enclosed in cornified hoofs.
- Locomotion is unguligrade, i.e. animal walks on the tips of the digits with the heels raised from the ground.
- There are no horns. Ex: Tapir, Equs.

Order 16.: Artiodactyla:

Terrestrial and herbivorous mammals. Limbs are long, adapted for fast running

- Each limb has only two functional digits. Each digits is enclosed in a cornified hoof.
- Locomotion is unguligrade.
- Neck is elongated. Many forms have horns or antlers on head. Incisors and canines are absent.
- Eyes are large, with horizontal pupil, pinnae are long and hearing is acute.
- Mammae are abdominal, they have teats.
- Scent glands are present for marking territory and for sexual and social life.

Ex: Hippopotamus, Lama

Summary

Adaptive radiation in mammals

- Adaptive radiation can be defined as " the evolution from a single ancestral species to a variety of forms which occupy different habitats".
- Osbom H. F. in 1898 developed the concept of adaptive radiation in evolution.
- The mammals originated during Eocene and Oligocene period moved into the habitats and ecological niches. Thus the mammals are showing variety of forms and different habitats.
- In evolutionary biology, adaptive radiation is a process in which organisms diversify rapidly from an ancestral species into a multitude of new forms, particularly when a change in the environment makes new resources available, creates new challenges, or opens new environmental niches.

Adaptive radiation in mammals based on locomotion:

- The primitive common ancestor mammals were terrestrial, 5 toed plantigrade limbs with no particular specialization.
- From this ancestor stem various types of modern mammals have evolved by the modification of limbs and other structures adapted to a wide variety of habitats.
- Mammals show five basic patterns of locomotion like running (cheetah horses, Zebras), burrowing (Rat, Shrew), tree climbing (Monkeys, Koala, Squirrels) flying (Bat, Flying Squirrels) and swimming (Whales, Dolphins).
- Their other modifications are walking (Elephant, Man), leaping (Kangaroos), graviportal (Elephants, Hippopotamuses, and Rhinoceroses).

Links:

https://docs.google.com/presentation/d/1CIn9ZqYrtaPzTfNgLdyg8JiFfBKmYgxi/edit#slide=id.p1

https://www.youtube.com/watch?v=2VfCnn_HZ0I

Explore more:

• Hickman, C.; Roberts, L.S.; Keen, S.L.; Larson, A. and Eisenhour, D. (2018) Animal Diversity, McGraw-Hill.

• Holland, P. (2011) The Animal Kingdom: A Very Short Introduction, Oxford University Press

. • Kardong, K.V. (2006) Vertebrates: Comparative Anatomy, Function, Evolution (4th edition), McGraw- Hill.

Assessment

Uni ts	Out-of –class activity Details of Activity	In-class activity Details of Activity	Assessment
1.1	Students should observe the specimens	Discussion on the topic Check the level of understanding through Question – answer session	Question – answer session
1.2	Students should classify the specimen Students should observe characters and identify mammals	Discussion on the topic Check the level of understanding through Question – answer session Help students to apply the knowledge	Question to write in detail classification with examples