

Punyashlok Ahilyadevi Holkar Solapur University, Solapur

Faculty of Science and Technology

Choice Based Credit System (CBCS)

(w.e.f. 2020-21)

Structure for B.Sc. II Microbiology (Semester III & IV)

Subject/ Core Course	Name and Ty	pe of the Paper	No. of Papers/ Practicals	Hrs	/ W	eek	Total Marks per paper	UA	CA	Credits
	Туре	Name		L	Τ	Р				
Class :			B.Sc. II Sei	mester	III					
	Core	C5	Paper – V Bacterial Cytology and Physiology	3.0	-	-	50	40	10	3.0
	Core	C6	Paper – VI Bacterial Genetics	3.0	-	-	50	40	10	3.0
Total				6.0			100	80	20	6.0
Class:	B.Sc. II Semester IV									
	Core	C7	Paper VII Immunology & Medical Microbiology	3.0	-	-	50	40	10	3.0
	Core	C8	Paper VIII Industrial Microbiology	3.0	-	-	50	40	10	3.0
	Ability Enhancement Course (AECC)	Environmental Studies		3.0	_	-	50	40	10	3.0
Total (Theory)				9.0	-	-	150	120	30	9.0
Practical	Core	C5 & C6	Paper V& VI	-	-	4.0	50	40	10	4.0
	Core	C7 & C8	Paper VII & VIII	-	-	4.0	50	40	10	4.0
Total Practical				-	-	8.0	100	80	20	8.0
Grand Total (Semester III & IV with Practicals)				15.0	-	8.0	350	280	70	23.0

	THEORY COURSE (03 Credits)		
	Total L	ectures 45	
U nit No.	Content of Unit		
Ι	Ultra-structure and Functions	15 L	
	1. Bacterial Cell wall: chemical composition, structure and		
	functions of cell wall of Gram Positive and Gram Negative		
	bacteria		
	2. Cell Membrane: Chemical Composition, structure and functions.		
	Transport across cell membrane – simple diffusion, facilitated		
	diffusion, active transport & group translocation.		
	3. Mesosome & its functions.		
	4. Flagella : Structure and functions, Mechanism of movement,		
	Tactic behaviors		
	5. Pili : Types, Structure and functions		
	 6. Cytoplasmic inclusions: Chlorobium vesicles. Gas vacuoles, 		
	Magnetosomes and carboxysomes and their functions		
	7. Reserve Food Materials : Nitrogenous and Non nitrogenous and		
	their role		
	8. Bacterial Endospore : Ultra-structure and functions, sporulation as an example of cell differentiation, Germination of endospore		
II	Bacterial Growth	07 L	
11		07 L	
	1. Definitions of - growth, generation time, growth rate and		
	Synchronous Growth		
	 Growth phases Measurement of growth – Cell numbers, Cell Mass and Cell 		
	ε		
	activity	10 1	
III	Effect of Environmental factors on Bacterial growth	10 L	
	1. Temperature Psychrophiles, Mesophiles, Thermophiles,		
	Thermodurics		
	2. pH- Acidophiles, Basophiles and Neutrophiles		
	3. Oxygen- Aerobic, Anaerobic, Facultative Anaerobic and		
	Microaerophilic		
	4. Osmotic pressure- Osmophilic(Halophilic)		
	5. Hydrostatic Pressure- Barophiles		
	6. Surface Tension		
IV	Bacterial Metabolism	13 L	
	1. Fates of Pyruvate – a) Aerobic Tri-Carboxylic Acid Cycle b)		
	Anaerobic – Ethanol Fermentation c) Microaerobic – Lactic Acid		
	Fermentation		
	2. Modes of ATP generation –		
	2. Modes of ATP generation – a. Substrate Level Phosphorylation,		
	a. Substrate Level Phosphorylation,		
	a. Substrate Level Phosphorylation,b. Oxidative Phosphorylation - Respiratory electron transport		
	a. Substrate Level Phosphorylation,		

Reference Books:

1] Powar C.B. and Daginawala H.F. (1986). General Microbiology Vol. I & II

(2ndEdition), Himalaya Publishing House, Mumbai.

4] Dubey, R.C and Maheswari, D.K. (2000) General Microbiology. S. Chand, New Delhi.

^{2]} Stanier R.Y, et.al; General Microbiology

³ Pelczar, M.J., Chan, E.C.S. and Kreig, N.R. (1993). Microbiology. 5th Edition, Tata Mc Graw Hill Publishing Co., Ltd., New Delhi

	Paper-VI Bacterial Genetics			
THEORY COURSE (03 Credits) (45 L)				
Unit No.	Content of Unit	Allotted Lectures		
Unit-I: Structure of nucleic acids & Replication of Bacterial DNA	 1.Experimental evidenences for nucleic acid as genetic material- Griffith Experiment Avery, Macleod and McCarty's experiment Hershey and Chase experiment 2. Structure & forms or types of DNA- Watson and Crick's model of DNA A, B, C and Z form of DNA 3.DNA replication- Modes of replication (Conservative, semoconservative and Dispersive) Messelson & Stahl's experimental proof of semoconservative replication Enzymes involved in replication Mechanism of DNA replication 	12		
Unit –II: Gene, Genetic code and Plasmid	 Definitions and concepts of - Gene Genome Genotype Phenotype Cistron, Recon & Muton Split gene-concept of intron and exons Genetic code- Definition and properties of genetic code Plasmid- Definition of plasmid and episome Properties of plasmid Types of plasmid-F plasmid, R plasmid, Col plasmid, Ti plasmid, Linear plasmid and Yeast 2µ plasmid Applications of plasmid 	09		
Unit-III: Bacterial Mutation & Repair	 Mutations & Mutagenesis- Definition of mutation Mutagen- physical and chemical Mutagens Types of mutation- Base pair Substitution- Transition and Transversion Missense mutation Nonsense mutation Neutral Mutation Silent Mutation Frame shift Mutation 	12		

	 3. Types of mutation on the basis of molecular mechanism- Spontaneous Mutation- Definition, Fluctuation Test, Replica plate technique Definition and Mechanism of Induced Mutations caused by- Physical Mutagen- U.V.rays Chemical mutagens- 5-Bromouracil, 2-aminopurine, Hydroxylamine, Nitrous acid, alkylating agent and Acridine dyes. 4. DNA repair- Photo reactivation Dark repair Mechanism-Excision repair (Base and Nucleotide) 	
Unit- IV Bacterial	 Definition of recombination Fate of exogenote 	
Recombination	3.Types of recombination-	
	• Transformation- experimental proof & mechanism of transformation, Definition of transfection	
	 Conjugation- a)Discovery, experimental evidence (Leaderberg & Tautum's & Davis U Tube) b) Mechanism of conjugation- F+ X F-, HFr X F-, F'X F- 	12
	 Transduction- a) Discovery & experimental proof (Zinder & Leaderberg) 	
	b) Types of transduction- Specialized, Generalized and Abortive transduction.	

References:

- 1] A J Salle: Fundamentals of Bacteriology
- 2] R Y Stainer, Roger et.al: General Microbiology
- 3] Pelczar, M.J., Chan, E.C.S. and Kreig, N.R. (1993). Microbiology. 5th Edition, Tata

Mc Graw Hill Publishing Co., Ltd., New Delhi

- 4] Powar and Daginawala: General microbiology Vol. I, II, Himalaya Publishing House
- 5] Avinash and Kakoli Upadhay: Molbio, Himalaya Publishing House
- 6] Freifelder David: Microbial genetics, Jones and Bartlett Publications
- 7] James D Watson: Molecular biology of the gene, W. A. Benjamin, Inc.

Semester IV				
	Paper-VII Immunology & Medical Microbiology			
	THEORY COURSE (03 Credits)			
Total Lectures 45L				
Unit No.	Content of Unit	Lectures Allotted		
Unit I:	1. Immunity – Definition and concept	(12)		
Immunity	a. Innate immunity – Definition, Levels of			
·	innate immunity – Individual, racial and species			
	immunity, Mechanism of innate immunity-			
	mechanical, chemical, biological barriers[role of			
	normal flora, cells of innate immunity and their			
	role], inflammation and fever			
	b. Acquired immunity – definition, types-			
	Active & passive			
Unit II:	1. Antigen	(12)		
Antigen &	a.definition, concept of hapten, antigenic determinant,			
Antibody	b.Types of antigen			
	c.factors affecting antigenicity			
	2. Antibody (immunoglobulin)			
	a. Historical perspective-Immune sera and			
	concept of immunoglobulin			
	b. Basic structure of antibody (immunoglobulin)			
	c. Classes of immunoglobulins, physicochemical			
	& biological properties and functions of			
	Immunoglobulins.	(0.0)		
Unit III:	1. Purposes of antigen antibody reactions	(09)		
Antigen –	2. General features antigen antibody reactions			
antibody	3. Measurement of antigen antibody reactions			
reactions	4. Mechanism antigen antibody reactions			
	5. Types of antigen – antibody reactions: Agglutination			
	test, precipitation test, flocculation test, complement fixation			
T I \$4 TX7	test, Immunofluorescence test	(12)		
Unit IV- Microbial	A. Microbial Diseases	(12)		
Diseases	1.Bacterial Infections- Enteric fever, Staphylococcl wound infections and Urinary tract infections			
Clinical	2.Fungal Infection-Candidiais			
Microbiology	3.Viral Infection- Dengue fever			
THE ODIOIOSY	B. Clinical Microbiology			
	1.Basic concepts			
	2.Collection, handling & transportation of specimen			
	3. Methods of diagnosis of diseases- Microscopic, cultural,			
	biochemical & Serological.			
		l		

Reference Books:

- 1. Ananthanarayana R. and Paniker, C.K.J. (2000). Text Book of Microbiology, 9th Edition, Oriental Longman Publications, USA.
- 2. Roitt, I.M. (1998). Essentials of Immunology, ELBS and Black Well Scientific Publishers, England.
- 3. Prescott, M.J., Harley, J.P. and Klein, D.A. (2002). Microbiology. 5th Edition, WCB McGrawHill, New York.
- 4. Dugid, J.P., Medical Microbiology
- 5. Kubey Immunology

Semester -IV

	Paper VII: Industrial Microbiology	
	THEORY COURSE (03 Credits)	
	To	tal Lectures 45L Lectures
Unit No. Content of Unit		Allotted
UnitI: Industrial Microbiology	 Definition and Scope of industrial Microbiology, industrial important organisms with products (lists) Fermentations: Basic Concept, Types –Surface Culture Submerged Culture. Batch, Continuous culture (Chemostat & Turbidostat), Dual and Multiple 	(10)
	fermentation. 3. Design of typical Fermenter / Bioreactor: Parts and their functions	
UnitII: Fermentation Media	 Media for industrial Fermentations Media Components and Optimization Use of Waste as a fermentation Media Inoculum and Production media 	(12)
Unit III: Screening, Inoculum Development and Scale up	 Screening: Primary and Secondary Strain Improvement Preservation of industrially important microorganisms Inoculum Development Scale up of Fermentation 	(09)
Unit IV: Specific Fermentations & Fermentation Product Recovery	 a) Specific Fermentations 1. Penicillin fermentation (<i>P.chrysogenium</i>) 2.Alcohol (<i>S.cerevisiae</i>) 3. SCP (<i>S.cerevisiae</i>) 4.Amylase (A.niger) b) Fermentation Product Recovery 1. Criteria for selection of recovery method 2. Filtration, Centrifugation, Precipitation, Distillation, Crystallization and Drying. 	(14)

Reference Books:

- 1. Patel, A.H. (1984). Industrial Microbiology, Mac Milan India Ltd., Hyderabad.
- Cassida, L.E. (1968). Industrial Microbiology, Wiley Eastern Ltd. & New Age International Ltd., New Delhi.
- 3. Prescott & Dunn, Industrial Microbiology
- 4. Purohit, Microbiology- Fundamentals and Applications, sixth edition

5. Stanbury PF, Whitaker A and Hall SJ. (2006). Principles of Fermentation Technology. 2nd edition, Elsevier Science Ltd.

B. Sc. II Microbiology

Practical Course (Credits - 08)

- 1. Stains and Staining Procedures
 - i. Spore Staining [Dorner's method]
 - ii. Flagella Staining [Bailey's Method]
 - iii. Nuclear material Staining [Giemsa's method]
- 2. Preparation of culture media
 - a. Wilson and Blair's medium
 - b. Gelatin Agar
 - c. Amino Acid Decarboxylation Medium
 - d. Peptone Nitrate Broth
 - e. Hugh and Leifson's Medium
 - f. Amino Acid Deamination medium
 - g. Christensen's urea agar
- 3. Preparation of Reagents and Solutions
 - a. 1N NaOH
 - b. 1N HCl
 - c.10%Ferric chloride
 - d. Nitrate reduction test reagents (α naphthylamine & Sulphanilic acid)
 - e.1%Tannic acid
 - f. Phosphate buffer solution of pH 7.0
 - g. Benedict's reagent
 - h. Biuret reagent
- 4. Biochemical Tests
 - a. Gelatin Hydrolysis
 - b. Amino Acid Decarboxylation
 - c. Amino Acid Deamination
 - d. Urea Hydrolysis
 - e. Nitrate Reduction

- f. Oxidase
- g. Hugh and Leifson's
- h. Catalase
- 5. Effect of environmental factors on growth of microorganisms
 - a. UV light
 - b. Heavy Metals
 - c. Salt Concentration (NaCl)
 - d. pH
 - e. Temperature
 - f. Antibiotics [Penicillin & Streptomycin]
- 6. Primary Screening:
 - a. Antibiotic Producers Crowded Plate Technique
 - b. Amylase Producers Replica Plate Technique
- 7. Isolation & Identification of Pathogenic Microorganisms from Clinical Samples
 - a. Salmonella spp.
 - b. Candida spp.
 - c. Proteus spp.
- 8. Determination of Blood Groups ABO & Rh
- 9. Widal test (slide test): Qualitative
- 10. Glucose Estimation (Benedict's Method).
- 11. Protein Estimation (Biuret Method).
- 12. Study of Growth phases of *E.coli* by optical density method.
- 13. Isolation of DNA

Practical Question Paper for University Practical Examination

	Total Marks: 80
Q.1 Identification of Pathogen	20
Q.2 Biochemical Tests	10
Q.3 Staining / Screening	10
Q.4 Effects/ Growth Curve [lag phase]	10
Q.5 Glucose /Protein / Widal test/ Blood Groups	10
Q.6 Spotting on Media components, reagents and stains	
(05 Spots)	10
Q.7 Journal	05
Q.8 Tour Report	05

The practical Examination will be conducted for two (2) successive days for 6 hours each day. There will be one batch of maximum 20 students each day.

Internal Practical examination:

Total Marks: 20

The internal practical examination shall be as per scheme given by Faculty of Science.

Practical Examination will be conducted at the end of Semester IV

References for Practical course

- 1] Cappuccino, J.G. and Sherman, N. (2005). Microbiology A Laboratory Manual. 7th Edition. Pearson Education. Published by Dorling Kindersley (India) Pvt. Ltd.
- 2] Mukherjee, K.L. (1996). Medical Laboratory Technology. Vol II. Tata Mc GrawHill Publishing Co. Ltd., New Delhi
- 3] Dubey, R.C. and Maheswari, D.K. (2002). Practical Microbiology, S. Chand & Co., New Delhi
- 4] Naik Sandesh, Handbook of Practical microbiology
- 6] Frobisher, H., Hinsdil, R.D., Crabtree, K.T. and Goodhert, D.R. (2005) Fundamentals of Microbiology, Saunders and Company, London.
- 7] K.R.Aneja, Pranay Jain, Raman Aneja (2008). A Textbook of Basic and Applied Microbiology, New Age International Publishers