D.B.F. Dayanand College of Arts & Science, Solapur

COURSE OUTCOME

Name of Department _____Physics_____

B.A. / B.Sc. / M.A. / M.Sc.			
NAME OF SUBJECT : Physics			
SEM I/II/III/IV/V/VI			
COURSE NUMBER (PAPER NUMBER) : XIII TITLE OF COURSE (NAME OF PAPER) : Electrodynamics			
 Electrostatics and Charged particle dynamics: (8) 1.1 Coulomb's Law. 2 Gauss law in differential form. 1.3 Poisson's and Laplace's equations. 1.4 Applications of Poisson's and Laplace's equation to spherical systems. 5 Motion of charged particles in constant uniform electric (E) field. 6 Motion of charged particles in constant uniform magnetic (B) field. 7 Motion of charged particles in constant uniform crossed electric and magnetic fields. 			
 2. Time varying (7) 2.1 Electro force 2.2 Electromagnetic induction - Faraday's law. 2.3 Lenz's law. 2.4 Integral and differential forms of Faraday's law. 2.5 Self inductance. 2.6 Application of Self inductance to solenoid. 2.7 Mutual inductance. 2.8 Application of Mutual inductance to transformer. 3. Maxwell's Equations(9) 3.1Magnetic Susceptibility and permeability. 			

3.2 Biot-Savart's law 3.3 Derivation of ∇ .B= 0	
3.3 Derivation of ∇ .B=0	
3.4 Ampere's law.	
3.5 Derivation of $\nabla \times B = \mu_0 J OR$	
Differential form of Ampere's law.	
3.6 Equation of continuity.	
3.7 Displacement Current density.	
3.8 Maxwell's correction to Ampere's	
law.	
3.9 Maxwell's equations for time	
dependent electric and magnetic fields in	
vacuum.	
3.10 Maxwell's equations for time	
dependent electric and magnetic fields in	
material	
medium.	
3.11 Physical significance (Integral	
form) of Maxwell's Equations	
4. Electromagnetic waves. (8)	
4.1 Conservation of energy in	
electromagnetic fields and Poynting's	
theorem.	
4.2 Conservation of momentum in	
electromagnetic fields.	
4.3 Wave equations for electric and	
magnetic fields in vacuum	
4.4 Plane wave solutions, orthogonality	
of E,B and propagation vector K	
4.5 Plane E. M. waves in Dielectric	
4.6 Plane E. M. waves in conductors	
Attenuation of wave in metal (skin	
depth)	
5. Reflection and Refraction of E. M.	
waves: (8)	
5.1 Boundary conditions for e. m. field	
vectorsD,B,E & H	
5.2 Reflection and refraction of e.m.	
waves at a boundary of two dielectrics	
(Normal	
incidence only)	
5.3 Reflection from a conducting plane-	
normal incidence.	
5.4 Total Internal Reflection	
6. Radiation from electric dipole (5)	
6.1Electric dipole	
6.2 Retarded time and retarded potential	
6.3 Electric dipole radiation	
6.4 Radiation reaction for Electric dipole	

Signature of HOD